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Executive Summary 5 

A method for solar forecasting using cloud motion vectors (CMV) from satellite imagery with the 6 

ability to characterize forecast uncertainty has been developed. On average, the root mean square error 7 

(RMSE) for CMV forecast increases with increasing forecast horizon and becomes larger than the North 8 

American Model (NAM, a numerical weather prediction model) forecast error at between 6 hours and 1 9 

day. Consequently, satellite CMV forecasts are superior for short time horizons and they are currently 10 

used as the model of choice in SolarAnywhere forecasts up to a 6 hour horizon. However, the forecast 11 

horizon at which the ‘crossover’ between CMV and NAM occurs is dynamic (as short as 2 hours) and 12 

could be adjusted if the CMV forecast certainty was known at forecast issue time. The RMSE of CMV 13 

forecasts was most related to satellite image entropy and uniformity. The relative performance (RP), i.e. 14 

the ratio of the errors of NAM and satellite CMV forecast is also analyzed.  The average rRMSE of 15 

predicting RP is shown to be about 30% for two different modeling techniques. The models and metrics 16 

developed in this project can be applied to choose the optimal forecast model and reduce solar forecast 17 

errors especially for hour-ahead forecasts. An operational CMV forecast can be produced with a 25 18 

minute latency. 19 

1. Introduction 20 

Hours-ahead solar forecasting is important for grid operators to manage intra-day solar variability 21 

through procurement of reserves and operation of energy markets. As Geostationary Operational 22 

Environmental Satellite (GOES-15) was deployed last year and the more advanced GOES-R will be 23 

launched in 2017, the ability of solar forecasting using satellite imagery is expected to improve and to be 24 

widely used by forecast providers.  25 

In this study, a technique for solar forecasting using satellite imagery with the ability to characterize 26 

and predict forecast error is presented. Many forecast techniques have been developed for solar 27 

irradiance using satellite imagery and Numerical Weather Prediction (NWP) (e.g. Hammer et al, 2000, 28 

Perez et al., 2010, 2011, Marquez et al., 2012). Perez et al (2010) showed that the satellite cloud motion-29 

based forecasts improve upon NWP forecasts up to forecast horizons of 4-5 hours on average over the 30 

United States. For operational forecasting, however, the relative skill of different forecasts depends on 31 

meteorological conditions. The motivation of this study is to determine this “cross-over time” under 32 

different conditions and determine parameters (cloud cover fraction, cloud speed, etc.) that are good 33 

predictors for this cross-over time.  34 
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For NWP, good predictors of solar irradiance forecast error are clear sky index and solar zenith angle 35 

(Lorenz et al., 2009, Mathiesen and Kleissl, 2011). For satellite forecasts no published results on 36 

predictors of error exist. Knowledge of the cross-over time and determining parameters will allow the 37 

composition of a forecast across all time horizons, which is based on optimal combinations of inputs 38 

from different models. For example, a satellite model would be chosen as the forecast if it had been 39 

determined to be most accurate for frontal passages with homogeneous cloud cover and persistent 40 

cloud motion. More accurate and certain solar forecasts would facilitate more economical high solar 41 

penetration on the electric grid. In section 2, we describe the data set in this study. In section 3, the 42 

cloud motion vector method is introduced (3.1) and characteristic image features are defined (3.2). Also, 43 

multivariate linear regression and analog models are described. In section 4, overall NWP and CMV 44 

model performance is quantified (4.1) and then CMV errors are related to satellite image features 45 

qualitatively (4.2) and through linear regression models (4.3). Finally, section 4.4 analyzes the 46 

predictability of the relative performance of NWP and CMV forecasts using linear regression and analog 47 

methods. Conclusion are presented in section 5. 48 

2. Data 49 

2.1 Goes-15 Imager data 50 

The Geostationary Operational Environmental Satellite-15 (GOES-15) Multispectral Imager 51 

satellite dataset from April 24th to May24th is used. GOES-15 generates a full disk image every 15 minutes 52 

with a spatial resolution of 1km and 4km for the visible and infrared bands, respectively. All of our 53 

results are presented at 4 km resolution. The domain of interest covers an open ocean region with an 54 

approximate size of 2000 km x 2000 km from        to        N and from         to          W (Fig 55 

1). Open ocean area is selected to avoid complex terrain effects that introduce stationary (mountain) 56 

clouds and high spatial variability in satellite measured reflectivity. GOES-15 images starting at 1645 and 57 

1700 UTC (09 PST) are used to determine cloud speed and the 1700 UTC cloud transmission image is 58 

advected with hourly time steps out to a forecast horizon of 6 hours. 59 

 

 
 
 
 
 
 
Figure 1. GOES-15 visible 
channel image that shows the 
region of interest (blue) with 
the coast and California state 
lines (red). 
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2.2 CLAVR-x  60 

The GOES-15 data is processed with the CLAVR-x algorithm developed by the GOES-R Advanced 61 

Baseline Imager (ABI) Cloud Algorithm Working Group (AWG) to provide cloud-related information. 62 

CLAVR-x generates cloud masks and classifies clouds into different types such as water, supercooled 63 

water, mixed phase, cirrus, opaque ice, etc (Pavolonis et al 2004, 2005). Among over thirty variables, 64 

cloud transmission and cloud mask with 4 km spatial resolution from the CLAVR-x are used. Assuming 65 

the atmosphere without clouds is transparent to the global horizontal irradiance (GHI), cloud 66 

transmission can be approximated as the clear sky index defined as 67 

    
           
             

  
(1) 

  68 

where               is computed using a clear sky model that depends on location, time, elevation, and 69 

Linke turbidity (Ineichen and Perez, 2002). Since the spatial resolution and coordinate system is different 70 

between GOES-15 and NAM data. GOES-15 data is up-scaled and collocated with the NAM by simple 71 

averaging and linear interpolation.  72 

2.3 North American Mesoscale Model (NAM) 73 

The total downward short wave radiation (GHI) from the NAM forecast is published by the 74 

National Oceanic and Atmospheric Administration’s (NOAA) NCEP with a 12 km x 12 km grid spanning 75 

the continental United States (CONUS). Forecasts published at 12 UTC (shortly before sunrise at the 76 

region of interest) with hourly time steps out to 36 hours are used. Forecast kt is computed as in Eq. (1). 77 

Since satellite forecast issue time is 1700 UTC (Section 2.1), the sixth hour of the NAM forecast is 78 

compared to the first hour of satellite forecast and so on. Since the NAM forecast error varies only 79 

weakly in time for the first 24 hours (Perez et al., 2009), the difference in forecast horizon is not 80 

expected to impact the results. 81 

3. Methods 82 

3.1 Cloud Motion Vectors Forecast 83 

Atmospheric motion vectors (AMV) have been derived from geostationary satellites since the 84 

1960s (Fujita 1968) and different tracers and meteorological scales have been selected to derive AMV. In 85 

this paper, the cloud transmission or kt is used as a tracer. The cross-correlation method (CCM) and two 86 

consecutive (15 min apart) kt images are utilized to derive cloud motion vectors (CMVs). A 15 x 15 pixels 87 

(60 x 60 km) target box is used to cross-correlate within a 100 x 100 km search box (Fig. 2). This limits 88 

the maximum detectable velocity to 200 km h-1. To increase the computational efficiency, CCM only 89 

computed at 12 km resolution (every 3 pixels). 90 

Assuming kt and CMVs remain constant over the forecast horizon, computed pixel-by-pixel 91 

CMVs are used to advect the kt pixels to each forecast horizon (Fig. 2). Nearest neighborhood 92 

interpolation is applied on sections of the forecast kt image where gaps and overlapping pixels are 93 

introduced by converging and diverging flow. 94 



4 
 

Two quality control procedures are applied. First, CMVs in cloud-free regions (as per the CLAVR-95 

x cloud mask) are removed. Second, AMVs that significantly differ from the neighboring vectors are 96 

replaced using a median filter technique. These vectors might represent errors in the cross-correlation 97 

algorithm or (less likely) depict actual local (microscale) motion associated with convective clouds 98 

(Mecikalski 2002; Rabin et al. 2004). The objective is to estimate hours-ahead cloud motion, therefore, 99 

small scale convective (and short-lived) cloud motion (as considered for example in Nieman et al. (1997), 100 

Velden et al. (1997, 1998)) is neglected here. 101 

 
Figure 2. Illustration of CCM on an image of cloud transmission (4 km resolution) at 10 PST on 7th June, 
2012. A 60 x 60 km pixels target box (solid black line) is cross-correlated within a 100 x 100 km pixels 
search box (dash black line) from a cloud transmission image 15 minutes later (not shown here). A cloud 
motion vector is obtained for the center pixel of the target box.  

3.2 Features 102 

Seven different regional features (Table 1) extracted from the forecast kt maps are used to 103 

characterize the CMV and NAM forecast error. For CMV forecast, spatially averaged cloud speed, kt 104 

(AVGKT), correlation coefficient (CC) obtained as described in section 3.1, standard deviation of kt (std), 105 

cloud fraction (Cf from CLAVR-x), entropy, and uniformity are computed over the domain (Fig. 1) to 106 

represent the state of atmosphere (Fig. 3). All features are computed on the forecast kt image to 107 

account for likely local conditions at the forecast valid time. For NAM, the same forecast features are 108 

computed except cloud speed, std, and CC. 109 

Table 1. Regional features that are extracted from the forecasted kt image and used as the predictors of CMV 
and NAM forecast error. 

Regional Features Formula Description and Relevance 

   
Cloud fraction (Cf)                   

           
 

An image with a very small or very large cloud 
fraction (clear or overcast) is easier to forecast 

Cloud Speed 

∑ (   )   

 

   

 

    is the cloud speed of each pixel,   is the 
probability of    , and   is the number of pixels in an 
image. An image with higher cloud speed would be 
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Table 1. Regional features that are extracted from the forecasted kt image and used as the predictors of CMV 
and NAM forecast error. 

Regional Features Formula Description and Relevance 

their actual position. 

Correlation 
Coefficient (CC) 

∑ (   )   

 

   

 

Spatially averaged cross-correlation coefficient 
measuring the degree of correspondence between 
the 1645 and 1700 images that are used to 
determine CMVs (Haralick et al, 1992). An image 
with smaller CC indicates larger shape or cover 
changes in the cloud field making CMVs less 
accurate and violating the assumption of a ‘frozen’ 
cloud field. Reduced forecast accuracy would result. 

AVGKT 

∑ (   )   

 

   

 

Spatially averaged cloud transmission. 

Std 

√∑ (   )(    〈   〉)
 

 

   

 

Average contrast of an image (see Fig. 3). For the 
same Cf an image with larger std would be more 
difficult to forecast. 

Entropy 
∑ (   )     (   )

 

   

 
Randomness of an image (see Fig. 3). For the same 
std an image with larger Entropy would be more 
difficult to forecast. 

Uniformity 
∑ (   )

 

   

 
Uniformity in image pattern (see Fig. 3). For the 
same Cf an image with smaller Uniformity would be 
more difficult to forecast. 

 

  
Std: 0.19 0.19 

Entropy: 0.134 0.07 

Uniformity: 0.0122 0.069 

 
Figure 3. Illustration of two different kt (colorbar; blue: thick clouds, red: clear) patterns. Both (2000 x 2000 
km) images have the same average contrast (std) but different entropy and uniformity. The high entropy kt 
image (a) shows a random cloud field, while the low entropy kt image (b) shows a clear sky with a two well 
defined clouds. 

a) b)
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 110 

3.3 Multivariate linear regression 111 

To find out the important determinants of forecast error, a multivariate linear regression 112 

analysis of forecast error versus different combinations of features is performed as in  113 

                     (1) 
 114 

  and    represents the RMSE of the forecast and features at a specific forecast hour respectively,    is 115 

the fit coefficient solved for in the regression analysis, and   is the error term representing the mismatch 116 

between the linear model and the observations. The coefficient of determination (R2) quantifies the 117 

goodness of fit and is defined as the ratio of the variance of the regression model and the variance of 118 

the observations: 119 

     
∑ (    ̂ )

  
   

∑ (    ̅)
  

   

       
(2) 

 120 

where  ̂  is the mean modeled y (Eq. 1) and  ̅ is the mean measured y. The regression is fit to the 121 

training data and the results section shows results for an application to the test data (out of sample 122 

statistics). 123 

3.4 Analog scheme 124 

To address the limitations of the multivariable linear regression model, an artificial intelligence 125 

(AI) method called analog method is also used to estimate the forecast error. The analog of a forecast 126 

for a given location and time is defined as a past prediction that matches selected features of the 127 

current forecast. Analyzing historical forecasts errors for the analogs, forecast error can be inferred 128 

(DelleMonache et al. 2011).  129 

The search for analog forecasts is controlled by a K-nearest neighborhood (KNN) algorithm 130 

consisting of a weighted normalized Euclidean distance metric (‖ ‖) that ranks past predictions by how 131 

similar they are to the current forecast 132 

‖ ‖  √∑
(     )

 

  

 

   

  

(3) 

where    is the current forecast feature value;    is the feature value in an analog, N is the number of 133 

features,    is the standard deviation of each feature in the training dataset respectively.  134 

K analogs (K = 10 here) with the shortest Euclidean distance are then used to predict the error of 135 

the current forecast. A weighted average of the analog errors is computed as 136 

    ∑     
 
   , (4) 
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where AN is the weighted average error,    is the analog distance in (3), and   is a weight that is 137 

inversely proportional to the distance of the analog from the forecast, 138 

    

 

‖  ‖

∑ ‖  ‖
 
 

  

 
(5) 

 Therefore, a higher weight will be assigned to the analog with the shortest distance from the current 139 

forecast.  140 

4. Results 141 

4.1 Forecast performance of different methods 142 

The performance of CMV forecast is compared to the NAM forecast and basic persistence 143 

forecast that equates future with current weather condition, i.e. the current kt satellite image is 144 

assumed to persist. Forecasts are validated against the truth CLAVR-x kt image. Choosing satellite data 145 

as a validation source may artificially increase the NWP and decrease the satellite error, since identical 146 

(satellite) and different (NWP) methods are used to determine kt. Comparing forecast results to 147 

(independent) ground irradiance measurements would be preferable, but measurement sites are not 148 

available at our oceanic site and would also be very sparse over land. The root mean square error 149 

between the forecast and truth image is given as  150 

      √
∑ (       )

  
   

 
  

 
(6) 

where    is the forecast kt,    is the truth kt, and   is the number of pixels in an image.  151 

Figure 4 shows the RMSE of kt at different forecast horizons for each forecast model. The NAM 152 

forecast error is shown to vary weakly with forecast horizon, which confirmed our earlier assumption. 153 

The CMV forecast error increases with increasing forecast horizon as expected. The persistence forecast 154 

errors are slightly larger than CMV forecast errors up to a 6 hours forecast horizon. The cross-over time 155 

between satellite CMV and NAM forecast is found to be in between forecast horizons of 6 hours and 1 156 

day, which is longer than in Perez et al. (2010) probably because Perez used ground measurements for 157 

validation. 158 
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Figure 4. RMSE of kt as a function of forecast horizon for each forecast model. Error bars show the 
standard deviation of the RMSE. Note the jump from 6 hours to 1 day on the x axis. 
 159 

4.2 Satellite forecast RMSE versus kt standard deviation, cloud speed, and 160 

cross-correlation coefficient 161 

To motivate the analysis in Section 4.3., dependencies of RMSE on a few features are shown in 162 

Figs. 5 and 6. The features are computed over 20x20 km (5x5 pixels) rather than the whole region 163 

described in section 3.2. Figure 5 shows that RMSE increases with increasing std for all forecast horizons. 164 

While RMSE also increases with increasing cloud speed, the increase is smaller (~0.04) than for the std 165 

(~0.1). Dependencies between the RMSE and a combination of two features are examined in Fig. 6; 166 

RMSE increases with increasing std and decreasing CC.  The sensitivity of RMSE to CC increases with std. 167 

The    of RMSE vs std, RMSE vs speed, and RMSE vs std and CC for the 1 hour forecast is 36%, 15.8%, 168 

and 50.7% respectively.  169 
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Figure 5. RMSE of kt as a function of std (left) and cloud speed (right) with different forecast horizons 
(colors).  

 
Figure 6. RMSE of kt (colorbar) as a function of std and CC for the 1st hour of CMV forecast.  

4.3 Multivariate linear regression for satellite forecast RMSE 170 
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Figure 7. Coefficient of determination (R2) for different combination of features for the 1st hour (top) 
and the 5th hour of CMV forecast (bottom). 
 

Figure 7 shows the coefficient of determination (R2) for several multivariate linear models (Eq. 1) 171 

at different forecast horizons, each representing a different combination of features. R2 describes the 172 

goodness of multivariate linear fit of RMSE. For the first forecast hour RMSE modeled with a single 173 

feature, the satellite forecast RMSE is most correlated to Entropy (R2=73.4%), followed by Uniformity 174 

(R2=65.7%). For two features, the highest correlated combination of features is Entropy and cloud 175 

fraction with a 3% increase (R2=76.4%) compared to the single feature using Entropy. R2 further 176 

increases to 83% with a combination of Entropy, Uniformity and Cf or AVGKT. Adding extra variables 177 

only slightly increases R2 to 85.4%. The R2
 for single and double feature model has a similar trend for 178 

forecast horizons of 1-3 hours. While cloud speed replaces Cf or AVGKT in triple variable models to 179 

become the highest correlated combination, the difference in R2 is not significant. Entropy and 180 

Uniformity are the most important features for 1-3 hour forecasts. 181 

At the fourth to sixth hour of forecast, the combination of important features changes (Fig. 7 182 

bottom). Entropy is still the feature with the largest R2. The combination of CC, AVGKT, and Entropy or 183 

Uniformity is found to have the highest correlation. Since entropy and uniformity are correlated and 184 

cloud fraction is correlated to AVGKT, the main difference between the 1-3 hours and 4-6 hours models 185 

is that CC  has a larger impact on the forecast RMSE for longer (> 3 hours) forecast horizon. 186 

The multivariate regression analysis suggests that Entropy (i.e. the randomness of the kt field, 187 

Fig. 3) is the primary predictor of CMV forecast RMSE. A high randomness typically indicates that the 188 

cloud pattern is made of many small scale clouds or clouds with high spatial variability of optical 189 

thickness. Since smaller scale clouds tend to have a smaller ‘half-life’ than large clouds, the assumption 190 

of a ‘frozen’ cloud field in the CMV method is violated, resulting in larger forecast error.  191 
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4.4 Predicting CMV versus NAM forecast performance 192 

 To demonstrate the performance of both predictive models, forecasts for May 25th - June 25th, 193 

2012 are analyzed using April 24 – May 24, 2012 as the training period. The RMSE predicted by the 194 

linear regression method in Eq. 1 and the weighted analog in Eq. 4 are validated against the truth RMSE. 195 

The relative RMSE (rRMSE) of each model is computed as 196 

            
 

        
√
∑ (                       )

  
   

 
      

 
(7) 

where          is the mean of the truth RMSE. 197 

To compare the predictability of errors of different forecasts, the relative performance (RP) is used: 198 

         
         
         

  
 

(8) 
 

where i indicates forecast horizon. The idea of RP is similar to the cross-over time mentioned earlier. RP 199 

describes the relative performance of two models in terms of RMSE at a particular forecast horizon: RP < 200 

1 indicates that CMV performs better than the NAM forecast, and vice versa. Under certain conditions, a 201 

cross-over time (RP = 1) earlier than the one in Fig. 4 can be found (Fig. 8). 202 
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NAM 
Forecast 

  
 

 
 

Figure 8. Images of kt at forecast 
horizons of (a)  1 hour (b) 2 hours 
(c) 3 hours for CMV and NAM 
forecasts and reference Kt on 27th 
May, 2012.  The area shown is 234 
x 470 km. In this case, the 
dissipation of clouds near the top 
and in the center and a phase-
shift (i.e. change in cloud speed) 
of the north-south cloudy stripe 
led to a rapid increase in CMV 
forecast error and cross-over with 
the NAM forecast at 2.5 hours (d). 

Table 2 shows a comparison of the performance of the multivariate regression and analog 203 

method in predicting CMV forecast error and RP. The analog method is shown to outperform the 204 

multivariate linear regression method with the best combination of features (largest R2) for both 205 

predicting CMV forecast error and RPNAM. The average rRMSE of predicting CMV forecast error is 14.4% 206 

and 23.9% for analog and regression method respectively, while the average rRMSE of predicting RPNAM  207 

is 27.6% and 31.7%. The errors of both methods are found to be independent of the forecast horizon.  208 

Satellite image Uniformity is observed to be the most important feature for predicting the RPNAM. The 209 

impact of other features varies by forecast horizon.  210 

Table 2. Predicted CMV forecast error and RP with analog and multivariate linear regression 
model. Training data is from April 24 - May 24 and test data is May 25 – June 25, 2012. 

 

 Predicted CMV forecast error Predicted RPNAM 

Forecast hour rRMSEanalog rRMSEregression rRMSEanalog rRMSEregression 

1 16.5% 21.4% 31.2% 37.3% 

2 13.0% 28.6% 27.2% 30.6% 

3 13.5% 19.7% 20.3% 27.2% 

4 15.6% 23.5% 29.6% 31.0% 

5 14.0% 23.2% 30.3% 35.1% 

6 13.9% 27.1% 27.1% 29.0% 
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5. Conclusions 211 

A technique for solar forecasting using satellite imagery with the ability to characterize and predict 212 

the forecast error using multivariate linear regression and the analog model is presented. CMV solar 213 

forecasts are computed using the cross-correlation algorithm applied pixel-by-pixel with CLAVR-x 214 

processed GOES-15 cloud transmissivity for one month. On average, the RMSE is found to increase with 215 

increasing forecast horizon for both persistence and CMV forecast and becoming large than NAM 216 

forecast error (i.e. with a cross-over time) at forecast horizons between 6 hours and 1 day. 217 

The dependence of forecast RMSE on different features is analyzed using multivariate linear 218 

regression and analog models. Entropy is shown to contribute the most to the CMV forecast RMSE. The 219 

rRMSE of predicting CMV forecast error is found to be 14.4% for the analog model and 23.9% for the 220 

regression model. This indicates that the CMV model errors show a non-linear dependence on the 221 

selected features that can be better captured by the analog method versus a linear regression. 222 

The relative performance of NAM and satellite CMV models is also analyzed. Based on Fig. 4, RP 223 

decreases from about 3.5 at the first forecast hour to 1.5 at the 6th forecast hour, on average. The cross-224 

over time (when CMV becomes less accurate than numerical weather prediction forecasts) is found to 225 

be more than 6 hours, on average, but as early as 2 hours under certain conditions. The rRMSE of 226 

predicting RP is shown to be 27.6% and 31.7% for analog and regression method respectively. 227 

Consequently, both models have skill in informing forecasters at what forecast horizon a numerical 228 

weather prediction forecast should start to be used instead of a satellite forecast. 229 

With only two months of available CLAVR-x data, the model performance is limited by the data size 230 

being used to train the models. Especially for the analog method a larger training data set increases the 231 

chance to find similar analogs improving model accuracy.  232 

Table 3 shows the pipeline of operational satellite CMV forecast and the processing time for each 233 

step using a desktop computer. Using this strategy an operational forecast can be provided within less 234 

than 25 minutes after satellite image capture. 235 

Table 3. Pipeline of CMV forecast and the processing time for each step 

Procedures Processing time 

Download and extract GOES15 data from CLARV-x 20 min 

Compute cloud motion vectors 40 sec 

Advect kt pixels and register forecast images out to 6 hours 20 sec 

Predict errors and RP of CMV and NAM 90 sec 

 Total           23.5 min 
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